Mutant IDH1-driven cellular transformation increases RAD51-mediated homologous recombination and temozolomide resistance.
نویسندگان
چکیده
Isocitrate dehydrogenase 1 (IDH1) mutations occur in most lower grade glioma and not only drive gliomagenesis but are also associated with longer patient survival and improved response to temozolomide. To investigate the possible causative relationship between these events, we introduced wild-type (WT) or mutant IDH1 into immortalized, untransformed human astrocytes, then monitored transformation status and temozolomide response. Temozolomide-sensitive parental cells exhibited DNA damage (γ-H2AX foci) and a prolonged G2 cell-cycle arrest beginning three days after temozolomide (100 μmol/L, 3 hours) exposure and persisting for more than four days. The same cells transformed by expression of mutant IDH1 exhibited a comparable degree of DNA damage and cell-cycle arrest, but both events resolved significantly faster in association with increased, rather than decreased, clonogenic survival. The increases in DNA damage processing, cell-cycle progression, and clonogenicity were unique to cells transformed by mutant IDH1, and were not noted in cells transformed by WT IDH1 or an oncogenic form (V12H) of Ras. Similarly, these effects were not noted following introduction of mutant IDH1 into Ras-transformed cells or established glioma cells. They were, however, associated with increased homologous recombination (HR) and could be reversed by the genetic or pharmacologic suppression of the HR DNA repair protein RAD51. These results show that mutant IDH1 drives a unique set of transformative events that indirectly enhance HR and facilitate repair of temozolomide-induced DNA damage and temozolomide resistance. The results also suggest that inhibitors of HR may be a viable means to enhance temozolomide response in IDH1-mutant glioma.
منابع مشابه
PLK1 inhibition enhances temozolomide efficacy in IDH1 mutant gliomas
Despite multimodal therapy with radiation and the DNA alkylating agent temozolomide (TMZ), malignant gliomas remain incurable. Up to 90% of grades II-III gliomas contain a single mutant isocitrate dehydrogenase 1 (IDH1) allele. IDH1 mutant-mediated transformation is associated with TMZ resistance; however, there is no clinically available means of sensitizing IDH1 mutant tumors to TMZ. In this ...
متن کاملIDH1 R132H mutation regulates glioma chemosensitivity through Nrf2 pathway
PURPOSE Numerous studies have reported that glioma patients with isocitrate dehydrogenase 1(IDH1) R132H mutation are sensitive to temozolomide treatment. However, the mechanism of IDH1 mutations on the chemosensitivity of glioma remains unclear. In this study, we investigated the role and the potential mechanism of Nrf2 in IDH1 R132H-mediated drug resistance. METHODS Wild type IDH1 (R132H-WT)...
متن کاملRoles of Rad51 paralogs for promoting homologous recombination in Leishmania infantum
To achieve drug resistance Leishmania parasite alters gene copy number by using its repeated sequences widely distributed through the genome. Even though homologous recombination (HR) is ascribed to maintain genome stability, this eukaryote exploits this potent mechanism driven by the Rad51 recombinase to form beneficial extrachromosomal circular amplicons. Here, we provide insights on the form...
متن کاملEnhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance.
DNA-damaging anticancer drugs remain a part of metastatic melanoma therapy. Epigenetic reprogramming caused by increased histone deacetylase (HDAC) activity arising during tumor formation may contribute to resistance of melanomas to the alkylating drugs temozolomide, dacarbazine, and fotemustine. Here, we report on the impact of class I HDACs on the response of malignant melanoma cells treated ...
متن کاملRad51 inhibition is an effective means of targeting DNA repair in glioma models and CD133+ tumor-derived cells.
High grade gliomas (HGGs) are characterized by resistance to radiotherapy and chemotherapy. Targeting Rad51-dependent homologous recombination repair may be an effective target for chemo- and radiosensitization. In this study we assessed the role of Rad51-dependent repair on sensitivity to radiation and temozolomide (TMZ) as single agents or in combination. Repair protein levels in established ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 74 17 شماره
صفحات -
تاریخ انتشار 2014